Die Sicherheit und Verfügbarkeit von SBB Eisenbahn-Infrastrukturanlagen wird durch die Geschäftseinheit Infrastruktur Überwachung (UEW) sichergestellt. SBB UEW hat einen Bedarf für ein „gezogenes Diagnosefahrzeug“ (gDFZ) um diesen Auftrag zu erfüllen und zugleich eine Erweiterung zum bestehenden selbstfahrenden Diagnosefahrzeug zu schaffen. Das gDFZ kann zusätzlich auch die Fahrdynamik und die Fahrleitung vermessen. Im Messeinsatz wird das gDFZ in einer Komposition mit Brems- und Steuerwagen von einer Lok gezogen.

Das Zentrale System (ZS) bildet das Herzstück des neuen Fahrzeuges. Es übernimmt nicht nur die Benutzerinteraktion, sondern auch die Überprüfung, die persistente Speicherung und die Anzeige aller Messdaten.

Die SBB haben SCS den Zuschlag für die Entwicklung des Zentralen Systems (Hardware und Software) erteilt. Das in der öffentlichen Ausschreibung erfolgreiche Konzept verbindet erstmalig modulare Messtechnik über offene Schnittstellen mit der Technologie eines modernen Rechenzentrums und integriert diese in ein Schienenfahrzeug. Das Leuchtturmprojekt erfüllt alle wesentlichen Merkmale einer „Industrie 4.0“ Anwendung.

Die Microservice Architektur erlaubt eine modulare, flexibel erweiterbare und hoch skalierbare Lösung. So entsteht eine übersichtliche und ausbaufähige Softwarelandschaft, welche sich über die gesamte Lebensdauer des gDFZ sehr gut weiterentwickeln lässt und zudem wirtschaftlich betrieben werden kann.

Zudem übernimmt SCS die Rolle des Integrators für das Gesamtsystem. Die Systemintegration ist der entscheidende Erfolgsfaktor für das gesamte Projekt. Die gewählte Lösung unterstützt deshalb die Integration von allen gängigen Diagnose- und Supportsystemen durch eine klare Systematik in der Vorgehensweise und durch eine offene, transparente und skalierbare Systemarchitektur. SCS verfügt über umfangreiche Erfahrungen sowohl im Bereich offener Systeme und der Integration von Drittsystemen, sowie in der Entwicklung von „Mission critical applications“ inklusive Wartung und Betreuung über den gesamten Lebenszyklus (Life Cycle Management – LCM), so zum Beispiel für das Kommunikationssystem der REGA.

Wir freuen uns sehr über diesen Zuschlag und auf die Zusammenarbeit mit den SBB sowie den Lieferanten der weiteren Arbeitspakete, den Peripheriesystemen und dem Fahrzeugumbau.

gDFZ-Komposition

Hintergrundinformationen zur Anwendung:

Die Geschäftseinheit Infrastruktur Überwachung der SBB hat den Auftrag, Sicherheit und Verfügbarkeit der Eisenbahn-Infrastrukturanlagen, unter Einhaltung der gesetzlichen Vorgaben, sicher zu stellen. Die Leistungen der Überwachung werden aus einem Mix menschlicher Expertise (Streckeninspektor) und maschinell ermittelter Diagnose- und Prognosedaten (Mess- und Diagnosetechnik) erfüllt. Mittelfristig steigt der Anteil an maschinellen Leistungen aufgrund der Ausweitung der industriellen Überwachung auf dem Netz und der Inbetriebnahme neuer Hochgeschwindigkeitsstrecken (Gotthard und Ceneri Basistunnel GBT/CBT).

Messfahrten sind Stand der Bahntechnik und für ein professionelles Anlagenmanagement insbesondere in den Anlagengattungen Fahrbahn und Fahrstrom unerlässlich. Die Messungen im Bereich Fahrtechnik sind zudem aufgrund gesetzlicher und normativer Vorgaben (u.a. R 22070) zwingend notwendig. Zuverlässige, konsistente und belastbare Messdaten liefern zudem einen wichtigen Input für die kurzfristige Diagnose (Überwachung), den präventiven Unterhalt und die Prognose des Substanzerhalts. Sie bilden die Basis für die mittel- und langfristige Unterhaltssteuerung der Anlagengattungen.

Ferag FlyStream

Industrie 4.0, Internet of Things, Cloud – diese Begriffe sind momentan in aller Munde. Meist fehlt jedoch noch ein einheitliches Verständnis darüber, was sie bedeuten, wie sie in der Industrie umzusetzen sind und vor allem, welchen Nutzen der Anwender davon hat.

Anlässlich einer aktuellen Gesprächsrunde des Diskussionsforums „Laufenburger Gespräche“ wurde Dr. Johannes Gassner als Experte eingeladen, um über das Thema zu sprechen.

Aus dem Gespräch entstand der Artikel „Schweizer KMU sind parat – nur der Nutzen ist oft nicht klar“. Dieser wurde gleich zweifach publiziert:

Hinter dem „Internet of Things“, kurz IoT, verbirgt sich beispielsweise die Absicht, möglichst viele elektrische Geräte mit der Fähigkeit auszustatten, via Internet miteinander zu kommunizieren. Unter Industrie 4.0 versteht man die Bündelung der technologischen Trends und eine Vision wie das produzierende Gewerbe in Zukunft aussehen könnte.

Die „Laufenburger Gespräche“ bieten eine Plattform, um interessante, brisante oder aktuelle Themen im Expertenkreis zu diskutieren.

Ansprechperson bei SCS
Florentin Marty

Communication Module

juk1Die Jöhl + Köferli AG bietet Funktechnik-Lösungen nach Mass. Ergänzt durch ein Leitsystem entsteht die zentrale Kommunikationsinfrastruktur für den öffentlichen Verkehr.

Die lückenlose und zuverlässige Funkabdeckung eines Gebietes wird durch topografische und bauliche Hindernisse erschwert. Die Jöhl + Köferli Gleichwellenfunktechnologie löst dieses Problem. Durch mehrere räumlich getrennte Basisstationen wird die Funkabdeckung garantiert. Diese senden die Informationen synchronisiert auf derselben Frequenz aus. So wird das Frequenzspektrum ökonomisch genutzt und es können einfache Endgeräte verwendet werden.

Die Sprachverbindung zwischen der Leitstelle und den Basisstationen erfolgt per Voice-over-IP. Die mikrosekundengenaue Synchronisierung basierend auf GPS erlaubt das gleichzeitige Aussenden des Signals an allen Basisstationen.

Die Supercomputing Systems AG (SCS) erarbeitete eine universelle Hardware Plattform, welche sowohl auf Seite Leitsystem (TMC) als auch auf Seite Funkstandort (BSC) eingesetzt werden kann. Sie basiert auf einem multi core ARM Cortex A9 Prozessor und Altera FPGA Technologie.

Weiter wurden die Linux Software und FPGA Firmware für die synchrone Voice-over-IP Kommunikation, FSK Modems und Rufauswerter entwickelt.

JoelKoeferli_LogoDie Plattform eignet sich für die Integration einer Vielzahl weiterer Signalverarbeitungsaufgaben.

Jöhl + Köferli setzt das Modul flexibel und universell ein und erweitert und es entsprechend der unterschiedlichen Bedürfnisse der Verkehrsbetriebe. Durch Web basierte Konfiguration ist eine Anpassung rasch erledigt.

Ansprechsperson bei SCS
Christof Sidler

 

Wir demonstrieren ein Entwicklungssystem für Stereo-Kamera-Fahrerassistenzsysteme auf der Basis des Zynq All Programmable SoC. Optimiert für die Entwicklung von Bildanalysealgorithmen demonstriert dieses System sowohl eine Bildentzerrung als auch die Berechnung des SGM Stereo um die Lage und den Abstand von Objekten abzubilden.

Um mehr zu erfahren, besuchen Sie uns an der Embedded World in Nürnberg.
Wir sind zu Gast am Xilinx-Stand 1-205.

www.scs.ch/fpgabox

SGM Stereo on SCS Zynq Box

EW2014

Moderne Autos setzen immer häufiger Kameras ein, um eine Vogelsicht der Umgebung darstellen zu können. Für die Entwicklung solcher Systeme benötigen die Hersteller der Kameras eine zuverlässige Messtechnik. Die SCS Messtechnik-Box ermöglicht das Aufnehmen und Abspielen von bis zu sechs LVDS-Kameras. Das von SCS entwickelte ‚Recorder System‘ wird von Automobil OEMs und Tier1s zur Entwicklung von Kameras und Surround-Systemen eingesetzt.

Zum Aufnehmen und Abspielen stehen sowohl Filter für Elektrobit Assist ADTF als auch eine von SCS entwickelte Stand-Alone GUI zur Verfügung.

Das System besteht aus der von SCS entwickelten Spartan 6 FPGA-Karte und einer für das entsprechende Kamerasystem angepasste Adapterkarte. Dadurch können präzise Hardware ‚Timestamps‘ aufgezeichnet und mehrere Kameras miteinander synchronisiert werden. Ausserdem können Algorithmen direkt auf dem FPGA gerechnet werden, um den Messtechnikrechner zu entlasten. Die Daten werden über Ethernet-Verbindungen zum Messtechnik-PC übertragen.

SCS kann das System dank seines Aufbaus sehr schnell Ihrem ‚Serializer‘ von Maxim, TI oder National Semiconductor anpassen.

Der von SCS entwickelte JPEG IP core für FPGA’s ermöglicht den Empfang von komprimierten Ethernet-Paketen und deren anschliessende Dekomprimierung. Der Decoder wurde auf niedrigen Ressourcenverbrauch für ein Xilinx Spartan6 oder Zynq FPGA optimiert und wird von einem OEM und einem Tier1 bereits verwendet.

Der JPEG Decoder hat folgende Eigenschaften:

  • Processing rate of up to 140 MSamples/sec on Spartan6 FPGA
  • 12Bit / 8Bit version available
  • Four Huffmann tables (fixed or extracted from header)
  • Up to 8 quantization tables
  • Support to decode several interleaved image stripes
  • 3 color components
  • Support 1 scan configuration and YUV 4:2:0 (Different format on request)
  • Supports any image size up to 64kx64k
  • Supports restart markers

Als das Schweizer Startup-Unternehmen Limmex im Herbst 2011 den Verkauf der ‚Swiss Emergency Watch‘ startete, war dies der Beginn einer Erfolgsgeschichte. Die innovative Notruf-Uhr verbindet verschiedenste Technologien zum mobilen Notfallgerät der Zukunft.

Für die Kunden von Limmex sind die Verfügbarkeit der Vermittlungsplattform und die lange Batterielaufzeit unverzichtbare Erfolgsfaktoren. Sie sind die hauptsächlichen Erfolgsfaktoren dieses Produktes.

Die Dienstleistungen von SCS für die Limmex Notruf-Uhr umfassten:

  • Beratung bei der Systemarchitektur
  • Entwicklung von cloud-basierten Diensten
  • Entwicklung von Embedded Software
  • Entwicklung von Produktionstestsystemen